Interconversion of $syn-\{[(Me_3C)_3PRh(CO)]_2(\mu-Cl)(\mu-SR)\}\$ and $syn-\{[(Me_3C)_3PRh(CO)]_2(\mu-Cl)(\mu-PR_2)\}\$ through exchange of bridging ligands. A case of sterically inactivated chloro bridges in dirhodium complexes

Evelina Berkovich and Jochanan Blum

Department of Organic Chemistry, The Hebrew University, Jerusalem 91904 (Israel)

Herbert Schumann

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, D-10623 Berlin (Germany) (Received July 7, 1993)

Abstract

The transformation of $syn-[[(Me_3C)_3PRh(CO)]_2(\mu-Cl)(\mu-SCMe_3)$ to $syn-[[(Me_3C)_3PRh(CO)]_2(\mu-Cl)(\mu-PPh_2)$ by lithium diphenylphosphide in THF, and the conversion of $syn-[[(Me_3C)_3PRh(CO)]_2(\mu-Cl)(\mu-P(CMe_3)_2]]$ into the above thiolato-bridged dirhodium complex by [(1,1-dimethylethyl)thio]trimethylsilane in hexane, provide examples of preferential exchange of thiolato-and phosphino-bridging ligands in dirhodium complexes containing sterically hindered chloro bridges.

Key words: Rhodium; Interconversion

1. Introduction

The observations that dirhodium compounds of general formulas $syn{[(Me_3C)_3PRh(CO)]_2(\mu-Cl)(\mu-SR)]}$ (1) and syn-{[$(Me_3C)_3PRh(CO)]_2(\mu-Cl)(\mu-PR'_2)$ (2) are often more active catalysts than mono-rhodium complexes, [1,2] and more versatile than some dinuclear analogs with two thiolato- [3] or two phosphino-bridges [4], prompted our interest in the non-symmetrically bridged dirhodium compounds of type [(Me₃C)₃PRh- $(CO)]_2(\mu$ -SR) $(\mu$ -PR'₂) (3). The ease with which many chloro-bridged dirhodium complexes are cleaved on the one hand, and the resistance of compounds with two thiolato- or phosphino-bridges towards such cleavage on the other hand [5], could suggest facile transformation of either 1 or 2 to 3. Indeed, the feasibility of replacing chloro bridges in some dirhodium complexes containing one μ -Cl and one μ -PR₂ ligand has already been demonstrated [6].

2. Results and discussion

In the present study, we found, unexpectedly, that the chloro ligand in 1, $R = Me_3C$ is not affected by the phosphination agents $(Me_3C)_2PSiMe_3$ (4) and Ph_2PLi (5), and neither is the chloro bridge in 2, $R' = Me_3C$ replaced by active thiolating agents [Me_3CSSiMe_3 (6), thiols or alkali thiolates]. Some of these reagents proved, however, to replace the non-halogen bridges, *i.e.* the thiolato and phosphino ligands. Compound 1, $R = Me_3C$ (which is completely unreactive towards 4) was transformed to 2, R' = Ph upon treatment with an equimolar amount of 5 in THF at room temperature for 4 h (eqn. (1)). The transformation was found to take place even at $-20^{\circ}C$, although slowly.

$$syn-\{[(Me_{3}C)_{3}PRh(CO)]_{2}(\mu-CL)(\mu-SCMe_{3})\}+Ph_{2}PLi\longrightarrow$$

1,
$$R = Me_3C$$
 5

$$syn-\{[(Me_3C)PRh(CO)]_2(\mu-Cl)(\mu-PPh_2)\}+Me_3CSLi$$
 (1)

2, R' = Ph

Complex 2,
$$R' = Me_3C$$
, was converted into the thio-

Correspondence to: Professor J. Blum or Professor H. Schumann.

lato-bridged compound 1, $R = Me_3C$ when treated with 6 in boiling hexane (eqn. (2)).

$$syn-\{[(Me_3C)_3PRh(CO)]_2(\mu-Cl)[\mu-P(CMe_3)_2]\} + Me_3CSSiMe_3 \longrightarrow 2, R' - Me_3C \qquad 6$$

 $syn-\{[(Me_3C)_3PRh(CO)]_2(\mu-Cl)(\mu-SCMe_3)\} + (Me_3C)_2PSiMe_3$ (2) 1, R = Me_3C 4

The structure of the dirhodium complex obtained in reaction 1 was established by: (i) its ¹H NMR spectrum, which consists of a doublet of the tris-tertbutylphosphine at 1.425 ppm (J(H,P) = 11.5 Hz), and multiplets at 7.050, 8.089 and 8.399 ppm of the aromatic ring protons, (ii) its ³¹P NMR spectrum which shows a tt pattern of the bridging atom at -3.06 ppm (J(P,P) = 233 Hz, J(P,Rh) = 90 Hz), indicating the syn orientation of the $P(CMe_3)_3$ groups that appear as a dd at 81.77 ppm (J(P,Rh) = 117 Hz); (iii) ${}^{1}H - {}^{31}P$ decoupling and ³¹P-³¹P DQF-COSY measurements; (iv) elemental analysis; and (v) two independent syntheses from $[Rh(CO)_2(\mu-Cl)]_2$ and $P(CMe_3)_3$ followed by reaction of the intermediate $[(Me_3C)_3PRh(CO)(\mu-Cl)]_2$ so formed with either 5 or Ph_2PSiMe_3 (7) (see Experimental details).

The product formed in reaction 2 was compared directly with an authentic sample of 1, $R = Me_3C$ (the identity of which had been previously determined by an X-ray diffraction study [1a]).

We attribute the resistance of the bridging chlorine atom in 1 and 2 ($R = Me_3C$) towards displacement by the various thiolating and phosphination agents to the steric effect of the *syn*-oriented tris-*tert*-butylphosphine ligands, which practically encapsulate the small chlorine atom and shield it from external attack. This shielding also accounts for the resistance of compounds 1 and 2 towards cleavage (even at elevated temperatures) during various catalytic processes [1,2].

3. Experimental details

All experiments were performed under dried oxygen-free argon by use of standard Schlenk and vacuum techniques. Solvents were dried by standard methods, and distilled under argon before use. Infrared spectra were recorded on a Perkin-Elmer Model 457 spectrophotometer. NMR spectra were recorded on Bruker WP 200 SY and AMX 400 spectrometers; ¹H and ³¹P chemical shifts are reported in ppm relative to TMS and 85% H₃PO₄, respectively.

Tetracarbonyl-di- μ -chlorodirhodium was purchased from Johnson Matthey, UK, and freshly sublimed before use. syn-{Dicarbonyl- μ -chloro[μ -(2-methyl-2-propanethiolato)bis[tris(1,1-dimethylethyl)phosphine]dirhodium (1, $R = Me_3C$) [1a], $syn-[\mu-[bis(1,1-dimethyleth$ $yl)phosphino]]dicarbonyl-<math>\mu$ -chlorobis-[tris(1,1-dimethylethyl)phosphine]dirhodium (2, $R' = Me_3C$) [2], [bis(1,1dimethylethyl)(trimethylsilyl)phosphine (4) [2], lithium diphenylphosphide (5) [7], [(1,1-dimethylethyl)thio]trimethylsilane (6) [8], and diphenyl(trimethylsilyl)phosphine (7) [7] were prepared by published methods.

3.1. syn-[Dicarbonyl- μ -chlorobis[tris(1,1-dimethylethyl) phosphine](μ -diphenylphosphino)]dirhodium (2, R' = Ph)

3.1.1. Method A

A solution of 448 mg (2.22 mmol) of (Me₃C)₃P in 3 ml of *n*-hexane was injected into a solution of 432 mg (1.11 mmol) of $[Rh(CO)_2(\mu-Cl)]_2$ in 30 ml of the same solvent. The mixture was refluxed for 40 min during which the color changed from light yellow to deep orange. The mixture was cooled to 50°C and a solution of 343 mg (1.33 mmol) of 7 in 7 ml of n-hexane was added. After 2h refluxing, the tan solution was cooled and concentrated under reduced pressure. The remaining liquid was decanted off, and the precipitate washed several times with cold *n*-hexane then dried at 0.05 T. Yield 490 mg (50%) of pale yellow 2, R' = Ph; m.p. 134-136°C (dec.). IR (KBr disk): v (CO) 1950, 1955 cm⁻¹. ¹H NMR (C₆D₆ 200 MHz): δ 1.425 (d, 54H, $J(H,P) = 11.5 \text{ Hz}, CH_3$; 7.050 (m, 4H, ArH); 8.089 (m, 4H, ArH); 8.399 (m, 2H, ArH). ³¹P{¹H} NMR (C₆D₆ 162 MHz): $\delta - 3.06 (tt, J(P,P) = 233 \text{ Hz}, J(P,Rh) = 90$ Hz, μ -PPh₂); 81.77 [dd, J(P,P) = 233 Hz, J(P,Rh) = 117Hz, (Me₃C)P]. Anal. Found: C, 50.93; H, 6.85; Cl, 4.55. $C_{38}H_{64}ClO_2P_3Rh_2$ (887.13) calcd: C, 51.44; H, 7.22; Cl, 4.00%.

3.1.2. Method B

A solution of 290 mg (1.44 mmol) of $(Me_3C)_3P$ in 5 ml THF was added to a solution of 284 mg (0.72 mmol) of $[Rh(CO_2)(\mu-Cl)]_2$ in 15 ml of the same solvent, and the mixture refluxed for 40 min. The solution was cooled to 20°C and 550 μ l of a 1.3 M Ph₂PLi in THF (0.72 mmol) diluted with 8 ml of the same solvent was added from a syringe. The mixture was stirred at room temperature for 16 h and the solvent removed under reduced pressure. The residue was digested with 5 ml of benzene and the insoluble LiCl filtered off. Evaporation of the solvent at room temperature afforded 302 mg (47%) of 2, R' = Ph, having the same physical properties as the sample obtained by method A.

3.2. Reaction of 1, $R = Me_3C$ with 5

To a stirred solution of 300 mg (0.38 mmol) of 1, R = Me₃C in 20 ml THF was added dropwise during 30 min 8 ml of THF containing 98 mg (0.4 mmol) of Ph_2PLi . The olive-brown solution was stirred at room temperature for 4 h. The solvent was removed under reduced pressure and the residue digested with 5 ml of benzene. The extract was filtered and evaporated to dryness, to give 134 mg of light-tan material that was shown by NMR spectroscopy, to consist of 85% of 2, R' = Ph and 15% of the unchanged starting complex, 1.

3.3. Reaction of 2, $R' = Me_3C$ with 6

A solution of 114 mg (0.77 mmol) of **6** in 5 ml of *n*-hexane was added to a solution of **2**, $\mathbf{R}' = \mathbf{Me}_3\mathbf{C}$ [freshly prepared from 0.77 mmol of $[\mathbf{Rh}(\mathbf{CO})_2(\mu-\mathbf{Cl})]_2$, 1.48 mmol of $(\mathbf{Me}_3\mathbf{C})_3\mathbf{P}$ and 0.83 mmol of **4** [2]] in 6 ml of the same solvent. The mixture was refluxed for 2 h, cooled and concentrated. The solvent was decanted, and the resulting precipitate washed twice with 5 ml of hexane to give 150 mg (25%) of pure **1**, $\mathbf{R} = \mathbf{Me}_3\mathbf{C}$ as pale-yellow crystals; m.p. 117–120°C (dec.). IR (KBr disk): ν (CO) 1972, 1963 cm⁻¹. ¹H NMR (C₆D₆ 200 MHz): δ 1.410 (d, 54H, $J(\mathbf{H},\mathbf{P}) = 12$ Hz, PCCH₃); 2.116 (s, 9H, SCCH₃). ³¹P{¹H}-NMR (C₆D₆ 162 MHz): δ 89.16 (d, $J(\mathbf{P},\mathbf{Rh}) = 140$ Hz) [1a].

Acknowledgments

We thank Dr. Roy Hoffman for his help with the NMR measurements, and the Deutsche Forschungsgemeinschaft for financial support of this study.

References

- (a) H. Schumann, G. Cielusek, S. Jurgis, E. Hahn, J. Pickardt, J. Blum, Y. Sasson and A. Zoran, *Chem. Ber.*, 117 (1984) 2825; (b) M. Eisen, J. Blum, H. Schumann and S. Jurgis, *J. Mol. Catal.*, 31 (1985) 317; (c) M. Eisen, J. Blum, H. Schumann and B. Gorella, *J. Mol. Catal.*, 56 (1989) 329; (d) M. Eisen, P. Weitz, S. Shtelzer, J. Blum, B. Gorella and F.H. Görlitz, *Inorg. Chim. Acta*, 188 (1991) 167.
- 2 E. Berkovich, A. Jacobson, J. Blum, H. Schumann, M. Schäfers and H. Hemling, J. Organomet. Chem., 436 (1992) 95.
- 3 See e.g. P. Kalck, Polyhedron, 7 (1988) 2441, and references cited therein.
- 4 (a) P.E. Kreter and D.W. Meek, *Inorg. Chem.*, 22 (1983) 319; (b) R.A. Jones and T.C. Wright, *Organometallics*, 2 (1983) 470.
- 5 See e.g. R.P. Hughes, in G. Wilkinson, F.G.A. Stone and E.W. Abel (eds.), Comprehensive Organometallic Chemistry. The Synthesis, Reactions, and Structures of Organometallic Compounds, Pergamon, Oxford, 1982, Vol. 5 Ch. 53.8, and references cited therein.
- 6 H. Werner, B. Klingert and A.L. Rheingold, Organometallics, 7 (1988) 911.
- 7 G.W. Luther, III and G. Beyerle, Inorg. Synth., 17 (1977) 186.
- 8 E.W. Abel, J. Chem. Soc. (1960), 4406.